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Time Scales in Quantum Mechanics by a
Scattering Map
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In quantum mechanics the problem of decoherence for an isolated, finite system
is linked to a coarse-grained description of its dynamics.

1. INTRODUCTION

As pointed out long ago by Ludwig, the typical problems about the

foundations of quantum mechanics (QM), basically arising from nonsepara-

bility, such as the EPR paradox and macroscopic superpositions in measuring
processes, are avoided if one shifts the basic elements of reality with which the

theory is dealing from microphysical components of matter to the macroscopic

setup of any experiment; then microsystems are derived objects carrying

correlations and interactions between sources and detectors. The microphysi-

cal structure of matter operatively implies the existence of this utmost simple

interaction channel between systems, and QM is just its beautifully simple
theory that one can derive from axioms superposed on an objective description

of macrosystems (Ludwig, 1983), arriving in this way at the modern formula-

tion in terms of POV measures and instruments (Kraus, 1983; Holevo, 1982;

Davies, 1976). So the real challenge of QM is the objective description of

macrosystems, where we are giving this name to any part of the world that
is separated from the environment and prepared in such a way that some

objective, and in this sense classical, description of it can be given. Adopting

this viewpoint has very relevant consequences for the mathematical setting

of the theory. Looking at any realistic example of a quantum description of

a macrosystem, there can be no doubt that its preparation has to be described
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by a mixture and not by a pure state. Preparations of the system are elements

of the set _(*) of statistical operators on the Hilbert space *, which is

naturally located in the Banach space 7(*) of trace-class operators [it is the
base of the positive cone, and the whole space 7(*) is ª positively generatedº

by it (Davies, 1976)]. Then the most natural way of representing the transfor-

mation of a preparation, like the very fundamental one arising by the time

evolution of an isolated system, is by means of a mapping } on 7(*)

transforming _ into _. However, such a mapping is not in general an isometry;

this happens if and only if it has an inverse and it is then implemented by
a unitary mapping on * (} ? 5 UÃ? UÃ² ), otherwise one meets a truly more

general framework for the dynamics, in which irreversibility appears as the

typical new feature. On the contrary, if one takes as the starting point the

QM of microsystems, the use of pure states is usually a very appropriate

idealization, justified by the high level of experimental control by which a

few-particle system can be prepared and strongly supported by the outstanding
role of unitary representations of symmetries in particle physics: in this

context time evolution is described in the most natural way by the SchroÈ dinger

equation. Tackling the question of macrosystems, one comes to statistical

operators invoking incomplete information about initial state, or decoherence

by the environment , or some mathematical extrapolation to an infinite system.
The last point of view gives nice results, but only in the particular case of

systems at equilibrium. So the usual scenario for the extraordinary perfor-

mances of QM is not very satisfactory: no direct objectivity can be attributed

to particles, and macrosystems (not at equilibrium), by which in Bohr ’ s

philosophy such objectivity can be recovered, can be described only in a

thermodynamic limit, which is hardly compatible with nonequilibrium
situations.

2. DEALING WITH FINITE MACROSYSTEMS

The very concept of isolated macrosystem is slippery: the macrosystem

must be separated inside a spatial region v by a suitable preparation procedure
covering a finite time interval [T, t0], the ª preparation time.º We will not

take the limit T ® 2 ` , since in our opinion one should avoid shifting this

problem to a cosmological level. Considering a finite preparation time means

that some memory loss is operatively necessary, the price of some coarse

graining of the dynamical description must be paid: to do this we associate

in a systematic way a suitable time scale to the preparation procedure. The
relevant role of the preparation procedure means a breaking of basic space-

time symmetry by suitable boundary conditions which introduce the peculiari-

ties of the system, hiding the more universal behavior of local or short-range

interactions. The field-theoretic approach, which is anyway mandatory in the
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relativistic case, is best suited to express the interplay of local universality

and peculiar boundary conditions. In this discussion of macrosystems let us

take, in the nonrelativistic limit, a very schematic model, built by one type
of molecules confined inside a region v and interacting by a two-body

potential V ( | x 2 y | ); this system is described by a quantum SchroÈ dinger field

(QSF) c Ã(x), to which the following local Hamiltonian density is associated:

eÃ(x) 5
" 2

2m
¹ c Ã² (x) ? ¹ D c Ã(x)

1
1

2 # v

d 3y c Ã² (x) c Ã² (y)V ( | x 2 y | ) c Ã(y) c Ã(x) (2.1)

[ c Ã(x), c Ã² (x8)] 6 5 d (x 2 x8)

Let us consider a complete orthonormal set of eigenfunctions uf P L 2( v ),

2
" 2

2m
D 2uf(x) 5 Wf u f (x) x P v , uf(x) 5 0 x P - v (2.2)

corresponding to the numerable set of eigenvalues W f , and the confined QSF

c ÃC(x) 5 ( fuf (x)aÃf. It will replace c Ã(x) in (2.1) and we shall leave out the

subscript C. The Hamiltonian HÃand mass operator MÃwill be taken respec-

tively as

HÃ5 # v

d 3x eÃ(x), MÃ5 # v

d 3x r Ãm(x), r Ãm(x) 5 m c Ã² (x) c Ã(x)

(2.3)

Obviously it may be uncomfortable to deal with the functions uf (x) and

to perform discrete sums, even if, but only at a final stage, one can do

approximations like

o
f

h(W f) u f (x) 5 # d m (p) h 1 p2

2m 2 e ip ? x/ "

The time scale is related to the choice of the relevant fields in terms of which

eÃ(x) is given. The picture founded on a ª mass chargedº field associated to

molecules holds if the physics of the system essentially depends on elastic

scattering of neutral molecules, the whole underlying electromagnetic struc-

ture being hidden: the intermolecular (e.g., Lennard-Jones) potential V (r) is
a simple effective representation of the molecular field self-interaction. A

much deeper description of dynamics is possible in terms of ª electrically

chargedº fields (electron and nuclei) based on QED, but also in this case

effective rough elements will enter in the Hamiltonian density, e.g., the
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electromagnetic form factors of nuclei. Unfortunately, no systematic attempt

to base macrophysics on QED has been developed. One can expect that the

relevance of time scales in macrophysics, the increasingly deeper descriptions
lowering the time scale, even if at any stage the separation procedure requires

a persistence of some coarse graining of the dynamical description, indicates

a link with the ultraviolet renormalization problem in field theory: such a

link appears clearer if quantum field theory is seen as the basic theory of

macroystems, rather than of particles. Let us now indicate briefly how a

piece of macrophysics can be built based on QSF: hydrodynamics, or with
a slight generalization, kinetic description of a massive neutral continuum.

First of all a classical velocity field is associated to the continuum and the

following basic densities of conserved quantum observables are considered:

eÃ(0)(x) 5
1

2m
(i " ¹ 2 mv(x, t)) c Ã² (x) ? ( 2 i " ¹ 2 mv(x, t)) c Ã(x)

1
1

2 # v

d 3y c Ã² (x) c Ã² (y)V ( | x 2 y | ) c Ã(y) c Ã(x)

r Ã(0)
m (x) 5 r Ãm(x) (2.4)

The field eÃ(0)(x) represents the energy density in the reference frame in which

the continuum is locally at rest. In the kinetic description the mass density
r Ãm(x) should be replaced by the more detailed phase-space distribution

observable

fÃ(x, p) 5 m o
hk

aÃ²h ^ uh | FÃ (1)(x, p) | uk & aÃk, MÃ 5 # v

d3x # R3
d 3p fÃ(x, p)

constructed on the second-quantized form of the operator density FÃ (1)(x, p)

on v 3 R 3 yielding a joint position±momentum observable. In correspondence

to the velocity field v(x, t) and to functions e (0)(x, t) and r (0)
m (x, t) associated

at time t to the operator fields eÃ(0)(x, t) and r Ã(0)
m (x, t), one considers the subset

of _ such that

e (0)(x, t) 5 Tr(eÃ(0)(x)wÃ), r m(x, t) 5 Tr( r Ãm(x)wÃ), 0 5 Tr(pÃ(0)(x)wÃ)

(2.5)

with pÃ(0)(x) the momentum density observable in the reference frame locally

at rest

pÃ(0)(x) 5
1

2
{[(i " ¹ 2 mv(x, t)) c Ã² (x)] c Ã(x)

2 c Ã² (x)(i " ¹ 1 mv(x, t)) c Ã(x)}
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Then one looks for an element of this subset such that its von Neumann

entropy S 5 2 kTr (wÃlog wÃ) is maximal. This means a statistical operator

giving the assigned classical state with highest mixture: i.e., assigning the
classical state has an unmixing role, but no other unmixing process is sup-

posed. This leads to a generalized Gibbs state (Robin, 1990):

wÃ
G(t) [ wÃ[ b (t), m (t), v(t)]

5

exp H 2 # v

d 3x b (x, t)[eÃ(0)(x) 2 m (x, t) r Ãm(x)] J
Tr exp H 2 # v

d 3x b (x, t)[eÃ(0)(x) 2 m (x, t) r Ãm(x)] J
(2.6)

In the kinetic case r Ãm is replaced by fÃand m is a function m (x, p). The

parameters b (t), m (t), v(t) are determined by (2.5) and will be considered as
objective state variables of the macrosystem; S 5 2 kTrwÃ

G(t) log wÃ
G(t) is the

entropy of the system.

Now the problem arises to make a suitable choice for the representative

of the state at some initial time t0. According to ª information thermodynam-

ics,º one takes the generalized Gibbs state determined by the given expectation
values at time t0, which is the most unbiased choice. This approach is certainly

satisfying if memory effects are absent or completely negligible and if no

other information about the system, apart from these expectations, is available,

that is to say: the preparation procedure may be idealized by the instantaneous

measurement of the relevant variables. More general situations, for example,

memory effects connected to a microphysical correlation time, demand a
preparation procedure covering at least the correlation time, thus leading to

memory terms in the representative of the state. The dynamical evolution

law must then be fine enough to take such effects into account. To circumvent

these difficulties Zubarev, in his definition of the ª non-equilibrium statistical

operatorº (Zubarev, 1974), takes the limit t0 ® 2 ` , thus removing any

possible previous memory. This is obtained at the price of introducing a
weighting factor e e t that has to be eliminated after the thermodynamic limit

has been taken, thus resorting once more to an infinite limit. Anyway a

suitable memory loss mechanism must be still assumed, typically the decay

time of correlation functions. Our aim is to extract from the dynamics this

memory loss mechanism, related to a time scale and described inside the
more general framework that we have indicated.

3. TIME SCALE AND SCATTERING MAP

Let us apply the model described in Section 2 to a dilute gas, assuming

that it has been prepared so that the relevant variables ^ eÃ(x) & , ^ r Ãm(x) & , and
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v(x, t) ^ r Ãm(x) & 5 ^ pÃ(x) & are smooth enough to provide a macroscopic variation

time much larger than the microscopic collision time t 0; then, taking into

account the field-theoretic structure of the relevant observables, one has to study
expressions of the form 88 (aÃ²haÃk), 88 (aÃ²h1 aÃ²h2 aÃk2 aÃk1), with 88 being the time

evolution mapping in Heisenberg picture on @(*) (88 ? 5 e 1 (i / " )HÃt ? e 2 (i / " )HÃt),

and to look for an asymptotic representation for t . . t 0. Our procedure essen-

tially consists in transferring to @(*) standard methods of scattering theory

related to *, so the following formulas need no other comment:

*80 5
i

"
[HÃ

0, ? ], HÃ
0 5 o

f
W f aÃ

²
f aÃf

88(t)(aÃ²
h aÃk) 5 (88(t)aÃ²h)(88(t)aÃk)

5 #
1 i ` 1 h

2 i ` 1 h

dz1

2 p i
e z1t 1 1

z1 2 *8
aÃ²h 2 #

1 i ` 1 h

2 i ` 1 h

dz2

2 p i
e z2t 1 1

z2 2 *8
aÃk 2 (3.1)

1

z 2 *8
5

1

z 2 *80
1

1

z 2 *80
7(z)

1

z 2 *80

7(z) [ 98 1 98
1

z 2 *8
98

7(z), reminiscent of the T-matrix, plays a central role in this treatment: it

will be called ª scattering map.º Existence of t 0 means suitable smoothness

properties of 7(z), so that essentially only the poles of (z 2 *80)
2 1 contribute

to the calculation in (3.1), leading to the representation

88(t)(aÃ²haÃk) 5 aÃ²h aÃk 1 t+8(aÃ²h aÃk), t 0 , , t , ,
"

| Eh 2 Ek |
(3.2)

Analogous formulas should be written with aÃ²h1 aÃ²h2 aÃk2 aÃk1 in place of aÃ²h aÃk;
for brevity we skip the derivation of (3.2), stressing only the structural
features. +8 is a linear mapping in @(*) initially defined on the family of

linearly independent elements aÃ²h aÃk , aÃ²h1 aÃ²h2
aÃk2 aÃk1. Our approach, related to

relevant field variables in Heisenberg picture, differs strongly from master

equation theory or investigations of subdynamics (e.g., Prigogine’ s approach)

aiming at a subdynamics for the statistical operator. The definition of
+8 (aÃ²h aÃk), the operator in the Fock-space of QSF, is at first sight very simple:

+8(aÃ²h aÃk) 5
i

"
[HÃ

eff, aÃ²haÃk] 2
1

"
([ G Ã(2), aÃ²h]aÃk 2 aÃ²h [ G Ã(2), aÃk])

1
1

" o
l

RÃ(2)²
h l RÃ(2)

k l
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HÃ
eff 5 o

f
Wf aÃ

²
f aÃf 1

1

2 o
l1l2
f1 f2

aÃ²l1 aÃ²l2V
eff
l1l2 f2 f1aÃf2aÃf1

G Ã(2) 5
1

4 o
h l

RÃ(2)²
h l RÃ(2)

h l

RÃ(2)
k l 5 o

f1 f2

Rk l f2 f1a
Ã
f2a

Ã
f1 (3.3)

The coefficients V
eff
l1l2 f 2 f 1 and Rk l f2 f1 are directly related to the two-particle

T-matrix for scattering produced by the potential V (r) appearing in (2.1).

This simple structure comes from a ª one-interacting-mode approximation,º
appropriate for a not too dense system, by which only two-particle collisions

are considered. However, the definition of +8 is trickier since by quantum

nonseparability, Pauli principle corrections must arise. In fact the coefficients

V eff
l1l2 f2 f1 and Rk l f2 f1 are not c-numbers, but are operator valued in the Fock-

space of QSF, diagonal in the basis created by aÃ
²
f ; to transform an element

| . . . nf . . . & of this basis by the operator +8 (aÃ
²
h aÃk) one applies to it the

r.h.s. of (3.3), where the coefficients V
eff
l1l2 f2 f1 and Rk l f2 f1 are functionals of

the configuration {nf}. +8 as given by (3.3) generates a positive dynamics,

i.e., (( ¢ t +8) is positive at first order in t , for t . 0. Actually one has a

stronger property:

o
hk

^ c h | [(( 1 t +8)(aÃ²haÃk)] c k & . 0, " { c k}, c k P * (3.4)

Due to the fact that (3.4) holds for t . 0 only, irreversibility is introduced.

Property (3.4) looks like a straightforward adjustment to the Fock-space

structure of the well-known complete positivity notion for a mapping }
on @(*):

o
hk

^ c h | }(AÃ²hAÃk) c k & . 0 " { c k}, {AÃk},

c k P *, AÃk P @(*)

The link between G Ã(2) and R (2)
k l implies mass conservation, +8MÃ 5 0. Now

the following assumption becomes very natural: the generalized Gibbs states

related to the relevant observables eÃ(x), r Ãm(x) can also be used to obtain the
expectations of the ª coarse-grainedº time derivatives of these variables, i.e.,

wÃand +8 are respectively state and evolution map tuned to the time scale

t . . t 0. Then by (2.5) one has the evolution equation for the generalized

Gibbs states:

d

dt
Tr(AÃwÃ[ b (t), m (t), v(t)]) 5 Tr((+8AÃ)wÃ[ b (t), m (t), v(t)]) (3.5)



552 Lanz and Vacchini

where AÃ5 eÃ(0)(x), r Ã(0)
m (x), pÃ(0) (x), thus providing a set of closed evolution

equations for the objective state parameters b (t), m (t), v(t). Choosing AÃ5
aÃ²h aÃk, by inspection of the r.h.s. of (3.3) one can immediately recognize the
relationship with Boltzmann equation: the last two terms of (3.3) have the

typical form of a collision operator, the G Ã(2), RÃ(2)²
h l ? RÃ(2)

k l contributions being

respectively the loss and the gain part. This description avoids any factoriza-

tion of many-particle distribution functions. The dynamics on the coarse-

grained time scale t . . t 0 loses any memory of previous states and is

described by the irreversible map +8. If the approximation leading to +8
does not work, one expects that memory effects can appear and that the

starting point could be shifted from (2.1) to the QED Hamiltonian. To conclude

these considerations about an isolated macrosystem described by a statistical

operator r ÃM(t) and a Hamiltonian HÃ
M, let us show how the simplest breaking

of the isolation of this system leads to the concept of a microsystem. Consider

a Hamiltonian HÃand a statistical operator r Ã(t) of the form

HÃ5 HÃ
0 1 HÃ

M 1 VÃ, HÃ
0 5 o

p
EpbÃ

²
pbÃp, [bÃp, bÃ²p] 7 5 d pq (3.6)

r Ã(t) 5 o
qp

bÃ²q r ÃM(t)bÃp r Ãqp(t), bÃp r ÃM 5 0 (3.7)

Due to the condition bÃp r ÃM 5 0, the QSF f Ã(x) 5 S q uÄ q(x)bÃq is either related

to a different particle or to other modes uÄ g (e.g., confinement in v Ä . v ) than

those involved in (2.2). Indicating with QÃ5 S qbÃ
²
qbÃq the related charge, one

has QÃr ÃM 5 0, QÃr Ã5 r Ã: this indicates the ª elementaryº nature of the changes

of r Ã. Under suitable conditions, the new relevant variables AÃ5 S h,kbÃ
²
h

AhkbÃk can be treated by the same procedure we have indicated before. Using

the reduction formula

Tr*(AÃr Ã(t)) 5 Tr*(1)(AÃ (1) r Ã(1)(t))

AÃ (1) 5 o
hk

| uh & Ahk ^ uk | , r Ä (1) 5 o
qp

| uq & r Ãqp ^ up |

*(1) being the Hilbert space spanned by uÄ q , the reduced dynamics can be

interpreted as a microsystem described in the Hilbert space *(1), with observ-

ables AÃ (1) and preparation r Ã(1). For r Ã(1) a master equation has been found

(Lanz and Vacchini, 1997a,b) describing both the optical behavior associated

to the analogous of HÃ
eff in (3.3) and a incoherent part related to the other

part of +8. The role of the first part is enhanced in the typical setup of particle
interferometry and in this way one comes back to the one-particle SchroÈ dinger

equation; the second part describes Brownian motion and thermalization of

the particle inside matter. We recall that an objective reinterpretation of the

dynamics of the new variables due to the non-Hamiltonian evolution is
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possible in terms of a statistical description of trajectories of the nonisolated

particle (Lanz and Melsheimer, 1993); however, a systematic extension of

this objectifying procedure to the relevant macroscopic variables considered
in Section 1, for which in the present treatment only the expectation values

have been considered, is an open question. The statistical operator (3.7)

describes a microsystem 1 a macrosystem without a reaction of the microsys-

tem on the macrosystem, so this is not yet enough to treat in the context of

the theory of macrosystems the typical setting: source±detector.
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